

Guido Barbiellini University and INFN, Trieste

In collaboration with Z.Bosnjak, A.Celotti, G.Ghirlanda and F.Longo

The BATSE instrument

- Nal scintillators
- 20 keV 2 MeV
- FoV 4π

Gamma-Ray Bursts

Temporal behaviour

2704 BATSE Gamma-Ray Bursts

Spectral shape

Spatial distribution

Jet and Energy Requirements

Bloom et al. (2003)

X-ray Lines

SN- GRB connection

SN 1998bw - GRB 980425 chance coincidence O(10⁻⁴) (Galama et al. 98)

GRB 030329: the "smoking gun"?

(Matheson et al. 2003)

Collapsar model

Woosley (1993)

- Very massive star that collapses in a rapidly spinning BH.
- Identification with SN explosion.

GRB: the Compton tail

GRB 020813 (credits to CXO/NASA)

GRB tails

The Compton Tail

Barbiellini et al. (2004) MNRAS 350, L5

The Compton tail

"Prompt" luminosity

$$\langle L_{\rm s} \rangle = \langle \frac{dn_{\rm s}}{d\Omega \, dt} \rangle \simeq \frac{n_{\rm p} \, e^{-\tau}}{\pi \theta_{\rm s}^2 \, t_{\rm grb}} \cdot \frac{\theta_{\rm s}^2}{\theta_{\rm j}^2}$$

Compton "Reprocessed" luminosity

$$\langle L_{\rm c} \rangle = \frac{n_{\rm p} (1 - e^{-\tau})}{2\pi t_{\rm geom}} \quad t_{\rm geom} \sim \frac{(R_0 + \Delta R)\theta_{\rm j}^2}{c}$$

"Q" ratio

$$Q = \frac{\langle L_{\rm c} \rangle}{\langle L_{\rm s} \rangle} = (e^{\tau} - 1) \cdot \frac{c \ t_{\rm grb}}{(R_0 + \Delta R)}$$

Bright and Dim GRB

Bright and Dim Bursts

- Bright bursts (peak counts > 1.5 cm⁻² s⁻¹)
 - $Q = 4.0 \pm 0.8 \ 10^{-4} \ (5 \ \sigma)$
 - $\tau = 1.3$
- Dim bursts (peak counts < 0.75 cm⁻² s⁻¹)
 - $Q = 5.6 \pm 1.4 \cdot 10^{-3} (4 \sigma)$
 - $\tau = 2.8$
- Mean fluence ratio = 11
- lacktriangle "Compton" correction $E=e^ au E_{
 m obs}$

$$E = e^{\tau} E_{\rm obs}$$

- Corrected fluence ratio = 2.8
- A cosmological effect?

Redshift

Luminosity distance

Redshift